Oracle Database 10g: SQL
Fundamentals Il

Electronic Presentation

D17111GC11
Production 1.1
August 2004
Applied

ORACLE

Author

Priya Vennapusa

Technical Contributors and
Reviewers

Brian Boxx
Andrew Brannigan
Zarko Cesljas
Marjolein Dekkers
Joel Goodman
Nancy Greenberg
Stefan Grenstad
Rosita Hanoman
Angelika Krupp
Christopher Lawless
Malika Marghadi
Priya Nathan
Ruediger Steffan

Publisher
Hemachitra K

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any means without the express
prior written permission of the Education Products group of Oracle Corporation. Any other copying is
a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Worldwide Education Services, Oracle Corporation,
5000racle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant

that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Introduction

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

- List the course objectives
 Describe the sample tables used in the course

ORACLE

[-2 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
« Use advanced SQL data retrieval techniques to
retrieve data from database tables
- Apply advanced techniques in a practice that
simulates real life

ORACLE

-3 Copyright © 2004, Oracle. All rights reserved.

Course Overview

In this course, you will use advanced SQL data
retrieval techniques such as:

- Datetime functions

ROLLUP, CUBE operators, and GROUPING SETS
 Hierarchical queries

 Correlated subqueries

* Multitable inserts

 Merge operation

- External tables

* Regular expression usage

ORACLE

-4 Copyright © 2004, Oracle. All rights reserved.

Course Application

EMPLOYEES DEPARTMENTS LOCATIONS
REGIONS COUNTRIES

ORACLE

I-5 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
« The course objectives
« The sample tables used in the course

ORACLE

I-6 Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

- Differentiate system privileges from object
privileges

- Grant privileges on tables

* View privileges in the data dictionary

 Grant roles

- Distinguish between privileges and roles

ORACLE

1-2 Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

Database

administrator . -,

Username and password
Privileges

Users

C
L(./

1-3

Copyright © 2004, Oracle. All rights reserved.

ORACLE

Privileges

- Database security:
— System security
— Data security
- System privileges: Gaining access to the database
* Object privileges: Manipulating the content of the
database objects

 Schemas: Collection of objects such as tables,
views, and sequences

ORACLE

1-4 Copyright © 2004, Oracle. All rights reserved.

System Privileges

 More than 100 privileges are available.
 The database administrator has high-level system
privileges for tasks such as:
— Creating new users
— Removing users
— Removing tables
— Backing up tables

ORACLE

1-5 Copyright © 2004, Oracle. All rights reserved.

Creating Users

The DBA creates users with the CREATE USER statement.

CREATE USER user
IDENTIFIED BY password;

CREATE USER HR
IDENTIFIED BY HR;
User created.

ORACLE
1-6 Copyright © 2004, Oracle. All rights reserved.

User System Privileges

- After a user is created, the DBA can grant specific
system privileges to that user.

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

 An application developer, for example, may have
the following system privileges:
— CREATE SESSION
— CREATE TABLE
— CREATE SEQUENCE
— CREATE VIEW
— CREATE PROCEDURE

ORACLE

1-7 Copyright © 2004, Oracle. All rights reserved.

Granting System Privileges

The DBA can grant specific system privileges to a
user.

GRANT create session, create table,
create sequence, create view

TO scott;

Grant succeeded.

ORACLE

1-8 Copyright © 2004, Oracle. All rights reserved.

What Is a Role?

C C C C
i o 'Il‘ ‘ = 'IL i = ’IIS ‘ gl
| B | Users |
)
Privileges
Allocating privileges Allocating privileges
without a role with a role

ORACLE

1-9 Copyright © 2004, Oracle. All rights reserved.

Creating and Granting Privileges to a Role

e Create arole

CREATE ROLE manager;
Role created.

- Grant privileges to a role

GRANT create table, create view
TO manager;
Grant succeeded.

« Grant arole to users

GRANT manager TO DE HAAN, KOCHHAR;
Grant succeeded.

ORACLE

1-10 Copyright © 2004, Oracle. All rights reserved.

Changing Your Password

- The DBA creates your user account and initializes
your password.

 You can change your password by using the
ALTER USER statement.

ALTER USER HR
IDENTIFIED BY employ;
User altered.

ORACLE

1-11 Copyright © 2004, Oracle. All rights reserved.

Object Privileges

Object

Privilege Table | View | Sequence |Procedure
ALTER v v

DELETE v v

EXECUTE v
INDEX v

INSERT v v

REFERENCES v

SELECT v v v

UPDATE v v

ORACLE

1-12 Copyright © 2004, Oracle. All rights reserved.

Object Privileges

« Object privileges vary from object to object.
 An owner has all the privileges on the object.

 An owner can give specific privileges on that
owner’s object.

GRANT object priv [(columns)]
ON object

TO {user| role|PUBLIC}
[WITH GRANT OPTION] ;

ORACLE

1-13 Copyright © 2004, Oracle. All rights reserved.

Granting Object Privileges

- Grant query privileges on the EMPLOYEES table.

GRANT select

ON employees

TO sue, rich;
Grant succeeded.

« Grant privileges to update specific columns to
users and roles.

GRANT update (department name, location id)
ON departments

TO scott, manager;

Grant succeeded.

ORACLE

1-14 Copyright © 2004, Oracle. All rights reserved.

Passing On Your Privileges

- Give a user authority to pass along privileges.

GRANT select, insert
ON departments

TO scott

WITH GRANT OPTION;
Grant succeeded.

« Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select

ON alice.departments
TO PUBLIC;

Grant succeeded.

ORACLE

1-15 Copyright © 2004, Oracle. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description

ROLE SYS PRIVS System privileges granted to roles
ROLE TAB PRIVS Table privileges granted to roles
USER_ROLE PRIVS Roles accessible by the user

USER_TAB PRIVS MADE | Object privileges granted on the user’s
objects

USER_TAB PRIVS RECD | Object privileges granted to the user

USER_COL_PRIVS MADE | Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS RECD | Object privileges granted to the user on
specific columns

USER_SYS PRIVS System privileges granted to the user

ORACLE

1-16 Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

* You use the REVOKE statement to revoke
privileges granted to other users.

* Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...] |ALL}
ON object

FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS] ;

ORACLE

1-17 Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS

table.
REVOKE select, insert
ON departments

FROM scott;
Revoke succeeded.

ORACLE

1-18 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about
statements that control access to the database and
database objects.

Statement Action

CREATE USER Creates a user (usually performed by a DBA)

GRANT Gives other users privileges to access the
objects

CREATE ROLE Creates a collection of privileges (usually
performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from users

ORACLE

1-19 Copyright © 2004, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
- Granting other users privileges to your table

- Modifying another user’s table through the
privileges granted to you

* Creating a synonym

* Querying the data dictionary views related to
privileges

ORACLE

1-20 Copyright © 2004, Oracle. All rights reserved.

ORACLE

1-21 Copyright © 2004, Oracle. All rights reserved.

ORACLE

1-22 Copyright © 2004, Oracle. All rights reserved.

ORACLE

1-23 Copyright © 2004, Oracle. All rights reserved.

ORACLE

1-24 Copyright © 2004, Oracle. All rights reserved.

Manage Schema Objects

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

« Add constraints
* Create indexes

 Create indexes using the CREATE TABLE
statement

- Creating function-based indexes
 Drop columns and set column UNUSED
 Perform FLASHBACK operations

« Create and use external tables

ORACLE

2-2 Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to:
e Add a new column
* Modify an existing column

« Define a default value for the new column
« Drop a column

ORACLE

2-3 Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns.
ALTER TABLE table

ADD (column datatype [DEFAULT expr]
[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]
[, column datatype]...);

ALTER TABLE table
DROP (column) ;

ORACLE

2-4 Copyright © 2004, Oracle. All rights reserved.

Adding a Column

* You use the ADD clause to add columns.

ALTER TABLE dept80
ADD (job_id VARCHARZ2 (9)) ;
Table altered.

* The new column becomes the last column.

EMPLOYEE_ID LAST NAME ANNSAL HIRE_DATE JOB_ID
145 Russell 14000 01-0CT-96
146 Parners 13500 05-JAMN-97
147 Errazunz 12000 10-MAR-SY
148 Cambrault 11000 15-0CT-99
149 lotkey 10500 29-JAMN-00

ORACLE

2-5 Copyright © 2004, Oracle. All rights reserved.

Modifying a Column

* You can change a column’s data type, size, and
default value.

ALTER TABLE dept80
MODIFY (last name VARCHAR2 (30));
Table altered.

- A change to the default value affects only
subsequent insertions to the table.

ORACLE

2-6 Copyright © 2004, Oracle. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table.

ALTER TABLE dept80
DROP COLUMN job id;
Table altered.

EMPLOYEE_ID LAST NAME ANNSAL HIRE_DATE
145 Russell 14000 01-0CT-96
146 Partners 13500 05-JAN-97
147 Errazurz 12000 10-MAR-SY
148 Cambrault 11000 15-0CT-39
149 Zotkey 10500 29-JAN-00

ORACLE

2-7 Copyright © 2004, Oracle. All rights reserved.

The SET UNUSED Option

* You use the SET UNUSED option to mark one or
more columns as unused.

* You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

ALTER TABLE <table name>

SET UNUSED|(<column name>) ;

OR

ALTER TABLE <table name>

SET UNUSED| COLUMN <column name>,

ALTER TABLE <table name>
DROP UNUSED COLUMNS;

ORACLE

2-8 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-9 Copyright © 2004, Oracle. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

 Add or drop a constraint, but not modify its
structure

« Enable or disable constraints

- Add a NOT NULL constraint by using the MODIFY
clause

ALTER TABLE <table name>
ADD [CONSTRAINT <constraint name>]
type (<column name>) ;

ORACLE

2-10 Copyright © 2004, Oracle. All rights reserved.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table

indicating that a manager must already exist as a valid
employee in the EMP2 table.

ALTER TABLE emp2

modify|employee_id Primary Key;
Table altered.

ALTER TABLE emp2

ADD| CONSTRAINT emp mgr fk
FOREIGN KEY (manager id)
REFERENCES emp2 (employee id) ;

Table altered.

ORACLE

2-11 Copyright © 2004, Oracle. All rights reserved.

ON DELETE CASCADE

Delete child rows when a parent key is deleted.

ALTER TABLE Emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department id)

REFERENCES departments ON DELETE CASCADE) ;
Table altered.

ORACLE
2-12 Copyright © 2004, Oracle. All rights reserved.

Deferring Constraints

Constraints can have the following attributes:
 DEFERRABLE Oor NOT DEFERRABLE

° INITIALLY DEFERRED or INITIALLY IMMEDIATE

ALTER TABLE dept2 Deferring constraint on
creation

ADD CONSTRAINT dept2 id pk

PRIMARY KEY (department id)

DEFERRABLE INITIALLY DEFERRED

SET CONSTRAINTS dept2_id pk |IMMEDIATE| | chandind 2 shectic

constraint attribute

ALTER SESSION Changing all constraints for a
SET CONSTRAINTS=|IMMEDIATE e O

ORACLE

2-13 Copyright © 2004, Oracle. All rights reserved.

Dropping a Constraint

Remove the manager constraint from the EMP2
table.

ALTER TABLE emp2
DROP CONSTRAINT emp mgr fk;
Table altered.

- Remove the PRIMARY KEY constraint on the
DEPT2 table and drop the associated FOREIGN
KEY constraint on the EMP2 . DEPARTMENT ID

column.

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;

Table altered.

ORACLE

2-14 Copyright © 2004, Oracle. All rights reserved.

Disabling Constraints

 Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.
 Apply the CASCADE option to disable dependent

integrity constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp dt fk;

Table altered.

ORACLE
Copyright © 2004, Oracle. All rights reserved.

2-15

Enabling Constraints

* Activate an integrity constraint currently disabled
in the table definition by using the ENABLE clause.

ALTER TABLE emp2
ENABLE CONSTRAINT emp dt fk;
Table altered.

- A UNIQUE index is automatically created if you
enable a UNIQUE key or PRIMARY KEY constraint.

ORACLE

2-16 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-17 Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

- The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.

« The CASCADE CONSTRAINTS clause drops all
referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

e The CASCADE CONSTRAINTS clause also drops all

multicolumn constraints defined on the dropped
columns.

ORACLE

2-18 Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE emp2

DROP COLUMN employee id CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE testl

DROP (pk, fk, coll) CASCADE CONSTRAINTS;
Table altered.

ORACLE

2-19 Copyright © 2004, Oracle. All rights reserved.

Overview of Indexes

Indexes are created:

* Automatically
— PRIMARY KEY creation
— UNIQUE KEY creation

* Manually
— CREATE INDEX statement
— CREATE TABLE statement

ORACLE

2-20 Copyright © 2004, Oracle. All rights reserved.

CREATE INDEX with CREATE TABLE
Statement

CREATE TABLE NEW EMP

(employee id NUMBER (6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp id idx ON
NEW EMP (employee id)),
first name VAﬁEhARZ(ZO), B
last name VARCHARZ2 (25)) ;

Table created.

SELECT INDEX NAME, TABLE NAME
FROM USER INDEXES
WHERE TABLE NAME = 'NEW EMP';

| INDEX_NAME | TABLE_NAME
[EMP_ID_ICi INEYY_EMP

ORACLE

2-21 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-22 Copyright © 2004, Oracle. All rights reserved.

Function-Based Indexes

A function-based index is based on expressions.

 The index expression is built from table columns,

constants, SQL functions, and user-defined
functions.

CREATE INDEX upper dept name idx
ON dept2 (UPPER (department name)) ;

Index created.

SELECT *
FROM dept2
WHERE UPPER (department name) = 'SALES';

ORACLE

2-23 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-24 Copyright © 2004, Oracle. All rights reserved.

Removing an Index

- Remove an index from the data dictionary by
using the DROP INDEX command.

DROP INDEX index;

* Remove the UPPER DEPT NAME IDX index from
the data dictionary.

DROP INDEX upper dept name idx;
Index dropped.

 To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

ORACLE

2-25 Copyright © 2004, Oracle. All rights reserved.

DROP TABLE .. PURGE

DROP TABLE dept80 |PURGE;

ORACLE

2-26 Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

* Repair tool for accidental table modifications
— Restores a table to an earlier point in time
— Benefits: Ease of use, availability, fast execution
— Performed in place

« Syntax:

FLASHBACK TABLE|[schema.]table],

[schema.]table]...

TO { TIMESTAMP | SCN } expr

[{ ENABLE | DISABLE } TRIGGERS],

ORACLE

2-27 Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

DROP TABLE emp2;
Table dropped

SELECT original name, operation, droptime,
FROM recyclebin;

ORIGINAL_NAME OPERATION DROPTIME
EmP2 DROF 2004-03-03:07:57:11

FLASHBACK TABLE emp2 TO BEFORE DROP;
Flashback complete

ORACLE

2-28 Copyright © 2004, Oracle. All rights reserved.

External Tables

ORACLE

2-29 Copyright © 2004, Oracle. All rights reserved.

Notes only

ORACLE

2-30 Copyright © 2004, Oracle. All rights reserved.

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the

directory on the file system where the external data
source resides.

CREATE OR REPLACE DIRECTORY emp dir
AS '/./emp dir';

GRANT READ ON DIRECTORY emp dir TO hr;

ORACLE

2-31 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-32 Copyright © 2004, Oracle. All rights reserved.

Creating an External Table

CREATE TABLE <table name>
(<col name> <datatype>, ..)
ORGANIZATION EXTERNAL
(TYPE <access_driver type>
DEFAULT DIRECTORY <directory name>
ACCESS PARAMETERS
(.))
LOCATION ('<location specifier>'))
REJECT LIMIT [0 | <number> | UNLIMITED];

ORACLE

2-33 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

2-34 Copyright © 2004, Oracle. All rights reserved.

Creating an External Table Using
ORACLE_LOADER

CREATE TABLE oldemp (
fname char (25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;

Table created.

ORACLE

2-35 Copyright © 2004, Oracle. All rights reserved.

Notes only

ORACLE

2-36 Copyright © 2004, Oracle. All rights reserved.

Querying External Tables

FNAME LNAME
Condtarin Wills
Hany Pacino
Manisha Tajlor
SELECT * Hanzan Sutheland
FROM ol demp Metthiag MacGraw
Hatk Hannah

ARSAREARARN
ARRRRRARNAS
AARRRRRRANAY

emp.dat

ORACLE

2-37 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
- Add constraints
* Create indexes

- Create a primary key constraint using an index

 Create indexes using the CREATE TABLE
statement

- Creating function-based indexes
 Drop columns and set column UNUSED
 Perform FLASHBACK operations

e Create and use external tables

ORACLE

2-38 Copyright © 2004, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
* Altering tables
 Adding columns
* Dropping columns
« Creating indexes
- Creating external tables

ORACLE

2-39 Copyright © 2004, Oracle. All rights reserved.

ORACLE

2-40 Copyright © 2004, Oracle. All rights reserved.

ORACLE

2-41 Copyright © 2004, Oracle. All rights reserved.

ORACLE

2-42 Copyright © 2004, Oracle. All rights reserved.

Manipulating Large Data Sets

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Manipulate data using subqueries
Describe the features of multitable inserts

Use the following types of multitable inserts
— Unconditional INSERT

— Pivoting INSERT

— Conditional ALL INSERT

— Conditional FIRST INSERT

Merge rows in a table
Track the changes to data over a period of time

ORACLE

3-2 Copyright © 2004, Oracle. All rights reserved.

Using Subqueries to Manipulate Data

You can use subqueries in DML statements to:
« Copy data from one table to another
* Retrieve data from an inline view

 Update data in one table based on the values of
another table

e Delete rows from one table based on rows in a
another table

ORACLE

3-3 Copyright © 2004, Oracle. All rights reserved.

Copying Rows from Another Table

* Write your INSERT statement with a subquery.

INSERT INTO sales reps(id, name, salary, commission pct)
SELECT employee:id, last name, salary, commissiod:pct
FROM employees

WHERE job id LIKE 'SREP%';

33 rows created.

* Do not use the VALUES clause.

- Match the number of columns in the INSERT
clause with that in the subquery.

ORACLE

3-4 Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

INSERT INTO
(SELECT employee id, last name,
email, hire date, job id, salary,
department id
FROM empl3
WHERE department id = 50)
VALUES (99999, 'Taylor', 'DTAYLOR',
TO DATE ('07-JUN-99', 'DD-MON-RR'),
'ST CLERK', 5000, 50);

1l row created.

ORACLE

3-5 Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

Verify the results.

SELECT employee id, last name, email, hire date,
job id, salary, department id

FROM employees

WHERE department id = 50;

EMPLOYEE_ID LAST_NAME EMAIL HIRE_DATE JOB_ID SALARY DEPARTMENT_ID
120 YWeiss MWEISS 18-JUL-96 ST_MAMN 5000 50
121 Fripp AFRIFPF 10-APR-97 5T _MARM 8200 Al
122 Kaufling FPRALIFLIMN O1-hAAY-95 5T MMARN F900 Al
193 Everett BEVERETT | 03-MAR-S7 =H CLERK J500 50
194 McCain ShCCAIN 01-JUL-98 =H CLERK 3200 50
195 Janes VIOMES 17-MAR-59 SH_CLERK 2800 a0
196 Walsh AMYALSH 24-APR-95 SH_CLERK 3100 a0
197 Feeney KFEEMEY 23-hlAN-98 =H CLERK S00o 50
193 QConnell COCOMMEL | 21-JUIM-99 =H CLERK 2500 50
199 Grant DGRAMT 13-JAN-00 SH_CLERK 2600 a0

| 95995 Taylor DIAVLOR 07-JUN-S3 ST _CLERK 5000 50|

46 rows selected.

ORACLE

3-6 Copyright © 2004, Oracle. All rights reserved.

Retrieving Data with a Subquery as Source

ORACLE

Copyright © 2004, Oracle. All rights reserved.

3-7

SELECT a.last name, a.salary,
a.department id, b.salavg
FROM employees a,[(SELECT department id,
AVG (salary) salavg
FROM employees
GROUP BY department id) b
WHERE a.department id = b.department id
AND a.salary > b.salavg;
LAST_NAME SALARY DEPARTMENT_ID SALAVG
King 24000 a0 18333.3333
Hunald 9000 B0 5760
Ermist B000 B0 5760
(Greenberg 12000 100 BE00
Faviet 9000 100 8600
Raphagly 11000 0 4150
Wieiss 8000 500 3475 55556
Fripp 5200 50 347555556

Updating Two Columns with a Subquery

Update the job and salary of employee 114 to match
the job of employee 205 and the salary of employee

168.
UPDATE empl3
SET job id =| (SELECT Jjob id
FROM employees
WHERE employee id = 205),
salary =| (SELECT salary
FROM employees
WHERE employee id = 168)
WHERE employee id = 114; -
1 row updated.

ORACLE

3-8 Copyright © 2004, Oracle. All rights reserved.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update rows
in a table based on values from another table.

UPDATE |empl3
SET department id

(SELECT department id
FROM |employees
WHERE employee id = 100)
(SELECT job id
FROM |employees
WHERE employee id

WHERE job id

200) ;
1 row updated.

ORACLE

3-9 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table.

DELETE FROM empl3

WHERE department id =
(SELECT department id

FROM departments
WHERE department name
LIKE '%Public%');

1l row deleted.

ORACLE

3-10 Copyright © 2004, Oracle. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

A subquery is used to identify the table and
columns of the DML statement.

* The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee id, last name, email,
hire date, Jjob id, salary
FROM empl3
WHERE department id = 50
WITH CHECK OPTION)
VALUES (99998, 'Smith', 'JSMITH',
TO DATE ('07-JUN-99', 'DD-MON-RR'),
'ST CLERK', 5000) ;
INSERT INTO
*
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

ORACLE

3-11 Copyright © 2004, Oracle. All rights reserved.

Overview of the Explicit Default Feature

« With the explicit default feature, you can use the
DEFAULT keyword as a column value where the

column default is desired.

 The addition of this feature is for compliance with
the SQL:1999 standard.

 This allows the user to control where and when
the default value should be applied to data.

- Explicit defaults can be used in INSERT and
UPDATE statements.

ORACLE

3-12 Copyright © 2004, Oracle. All rights reserved.

Using Explicit Default Values

 DEFAULT with INSERT:

INSERT INTO deptm3
(department id, department name, manager id)
VALUES (300, 'Engineering',6 [DEFAULT) ;

 DEFAULT with UPDATE:

UPDATE deptm3
SET manager id = DEFAULT
WHERE department id = 10;

ORACLE

3-13 Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

P
7"
e
Table a
INSERT ALL P
INTO table a |[VALUES(..,..,..) 77
INTO table b [VALUES(..,..,..) |.-""
INTO table c |VALUES(..,..,..)
SELECT ..
|
FROM sourcetab /.‘ Table b
WHERE ...: a e;_
,.ﬂ'
7
I /“
Table_c

ORACLE

3-14 Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

- The INSERT..SELECT statement can be used to
insert rows into multiple tables as part of a single
DML statement.

 Multitable INSERT statements can be used in data
warehousing systems to transfer data from one or
more operational sources to a set of target tables.

- They provide significant performance
improvement over:

— Single DML versus multiple INSERT..SELECT
statements

— Single DML versus a procedure to do multiple
inserts using IF. . .THEN syntax

ORACLE

3-15 Copyright © 2004, Oracle. All rights reserved.

Types of Multitable INSERT Statements

The different types of multitable INSERT statements
are:
* Unconditional INSERT

 Conditional ALL INSERT
 Conditional FIRST INSERT
* Pivoting INSERT

ORACLE

3-16 Copyright © 2004, Oracle. All rights reserved.

Multitable INSERT Statements

« Syntax

INSERT [ALL] [conditional insert clause]
[insert into clause values_clause] (subquery)

. conditional_insert_clause

[ALL] [FIRST]

[WHEN condition THEN] [insert into clause values clause]
[ELSE] [insert into clause values_clause]

ORACLE
3-17 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-18 Copyright © 2004, Oracle. All rights reserved.

Unconditional INSERT ALL

« Select the EMPLOYEE ID, HIRE DATE, SALARY, and
MANAGER ID values from the EMPLOYEES table for
those employees whose EMPLOYEE ID is greater

than 200.

* Insert these values into the SAL_HISTORY and
MGR HISTORY tables using a multitable INSERT.

INSERT | ALL
INTO sal history VALUES (EMPID,HIREDATE, SAL)

INTO mgr history VALUES (EMPID,MGR, SAL)
SELECT employee id EMPID, hire date HIREDATE,
salary SAL, manager id MGR
FROM employees
WHERE employee id > 200;
12 rows created.

ORACLE

3-19 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

« Select the EMPLOYEE ID, HIRE DATE, SALARY, and
MANAGER ID values from the EMPLOYEES table for
those employees whose EMPLOYEE ID is greater

than 200.
- If the SALARY is greater than $10,000, insert these

values into the SAL HISTORY table using a
conditional multitable INSERT statement.

- If the MANAGER ID is greater than 200, insert these
values into the MGR HISTORY table using a
conditional multitable INSERT statement.

ORACLE

3-20 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

INSERT ALL

WHEN | SAL > 10000 |[THEN
INTO sal history VALUES (EMPID,HIREDATE, SAL)

WHEN [MGR > 200 THEN
INTO mgr history VALUES (EMPID,MGR, SAL)
SELECT employee id EMPID,hire date HIREDATE,

salary SKI, manager id MGR

FROM employees -
WHERE employee id > 200;

4 rows created. -

ORACLE

3-21 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

- Select the DEPARTMENT ID, SUM(SALARY), and
MAX (HIRE DATE) from the EMPLOYEES table.

« If the SUM(SALARY) is greater than $25,000, then
insert these values into the SPECIAL SAL, using a
conditional FIRST multitable INSERT.

* If the first WHEN clause evaluates to true, then the
subsequent WHEN clauses for this row should be

skipped.

* For the rows that do not satisfy the first WHEN
condition, insert into the HIREDATE HISTORY 00,
HIREDATE HISTORY 99, or HIREDATE HISTORY
tables, based on the value in the HIRE _DATE
column using a conditional multitable INSERT.

ORACLE

3-22 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

INSERT| FIRST
WHEN SAL > 25000 THEN

INTO special sal VALUES (DEPTID, SAL)
WHEN HIREDATE like ('%00%') THEN

INTO hiredate history 00 VALUES (DEPTID,HIREDATE)
WHEN HIREDATE like ('%99%') THEN

INTO hiredate history 99 VALUES (DEPTID, HIREDATE)
ELSE
INTO hiredate history VALUES (DEPTID, HIREDATE)
SELECT department id DEPTID, SUM(salary) SAL,

MAX (hire date) HIREDATE

FROM employees
GROUP BY department id;
12 rows created.

ORACLE
3-23 Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

 Suppose you receive a set of sales records from a
nonrelational database table,
SALES SOURCE DATA, in the following format:

EMPLOYEE ID, WEEK ID, SALES MON, SALES TUE,
SALES WED, SALES THUR, SALES FRI

* You want to store these records in the
SALES_INFO table in a more typical relational

format:
EMPLOYEE_ID, WEEK, SALES

« Using a pivoting INSERT, convert the set of sales

records from the nonrelational database table to
relational format.

ORACLE

3-24 Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

INSERT ALL
INTO| sales_info|VALUES (employee id,week id,sales_ MON)
INTO| sales _info|VALUES (employee id,week id,sales TUE)
INTO| sales_info|VALUES (employee id,week id,sales_WED)
INTO| sales_info|VALUES (employee id,week id,sales_THUR)
INTO| sales_info|VALUES (employee id,week id, sales FRI)
SELECT EMPLOYEE ID, week id, sales MON, sales TUE,
sales WED, sales THUR,sales FRI

FROM sales_source_data;
5 rows created.

ORACLE

3-25 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-26 Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement

* Provides the ability to conditionally update or
insert data into a database table

 Performs an UPDATE if the row exists, and an
INSERT if it is a new row:
— Avoids separate updates
— Increases performance and ease of use
— Is useful in data warehousing applications

ORACLE

3-27 Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a table
by using the MERGE statement.

MERGE INTO table name table alias
USING (table|view|sub query) alias
ON (join condition)

WHEN MATCHED THEN
UPDATE SET
coll = col vall,
col2 = col2 val

WHEN NOT MATCHED THEN
INSERT (column list)
VALUES (column values) ;

ORACLE

3-28 Copyright © 2004, Oracle. All rights reserved.

Merging Rows

Insert or update rows in the EMPL3 table to match the
EMPLOYEES table.

MERGE INTO empl3 c
~ USING employees e
ON (c.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET
c.first name = e.first name,
c.last name e.last name,

c.department id = e.department id
WHEN NOT MATCHED THEN
 INSERT VALUES|(e.employee id, e.first name, e.last name,
e.email, e.phone number, e.hire date, e.job id,
e.salary, e.commission pct, e.manager id,
e.department id) ;

ORACLE

3-29 Copyright © 2004, Oracle. All rights reserved.

Merging Rows

TRUNCATE TABLE empl3;

SELECT *
FROM empl3;
no rows selected

MERGE INTO empl3 c

USING employees e

ON (c.employee id = e.employee id)
WHEN MATCHED THEN

UPDATE SET

WHEN NOT MATCHED THEN
INSERT VALUES...;

SELECT *
FROM empl3;

107 rows selected.

ORACLE

3-30 Copyright © 2004, Oracle. All rights reserved.

ORACLE

\ LRRERRN
AN

Rt \
N
EV_V A —

-

1
|

1Y

Tracking Changes in Data

Versions of retrieved rows

SELECT
3

Copyright © 2004, Oracle. All rights reserved.

3-31

Example of the Flashback Version Query

SELECT salary FROM employees3 <::>
WHERE employee id = 107;

SALARY
4200

UPDATE employees3 SET salary = salary * 1.30
WHERE employee id = 107; @
|COMMIT;|
SELECT salary FROM employees3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
WHERE employee id = 107;

SALARY
5460
4200

ORACLE

3-32 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

3-33 Copyright © 2004, Oracle. All rights reserved.

The VERSIONS BETWEEN Clause

SELECT versions_starttime "START DATE",
versions_endtime "END DATE",
salary

FROM employees

VERSIONS BETWEEN SCN MINVALUE

AND MAXVALUE

WHERE last name = 'Lorentz';
START DATE END_DATE SALARY
13-FEB-04 11.16.41 Al 5460
13-FEB-04 11.16.41 Ahd 4200

ORACLE

3-34 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Use DML statements and control transactions
« Describe the features of multitable inserts

- Use the following types of multitable inserts
— Unconditional INSERT
— Pivoting INSERT
— Conditional ALL INSERT
— Conditional FIRST INSERT

- Merge rows in a table
 Manipulate data using subqueries
 Track the changes to data over a period of time

ORACLE

3-35 Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
* Performing multitable INSERTSs

 Performing MERGE operations
* Tracking row versions

ORACLE

3-36 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-37 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-38 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-39 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-40 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-41 Copyright © 2004, Oracle. All rights reserved.

ORACLE

3-42 Copyright © 2004, Oracle. All rights reserved.

Generating Reports by Grouping
Related Data

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Use the ROLLUP operation to produce
subtotal values

 Use the CUBE operation to produce cross-
tabulation values

* Use the GROUPING function to identify the row
values created by ROLLUP or CUBE

« Use GROUPING SETS to produce a single result set

ORACLE

4-2 Copyright © 2004, Oracle. All rights reserved.

Review of Group Functions

« Group functions operate on sets of rows to give
one result per group.

SELECT [column,]| group function(column) .
FROM table

[WHERE condition]

ﬁGROUP BY group by expression]

[ORDER BY column];

Example:

SELECT AVG(salary), STDDEV (salary),

COUNT (commission pct) ,MAX (hire date)
FROM employees
WHERE job id LIKE 'SA%';

ORACLE

4-3 Copyright © 2004, Oracle. All rights reserved.

Review of the GROUP BY Clause

* Syntax:

SELECT [column,] group function(column).
FROM table

[WHERE condition]

[GROUP BY group by expression]

[ORDER BY column] ;

- Example:

SELECT department id, job id, SUM(salary),
COUNT (employee id)

FROM employees

GROUP BY department id, job id|;

ORACLE

4-4 Copyright © 2004, Oracle. All rights reserved.

Review of the HAVING Clause

« Use the HAVING clause to specify which groups

are to be displayed.
* You further restrict the groups on the basis of a
limiting condition.

SELECT [column,] group function(column)...
FROM table
[WHERE condition]
[GROUP BY group by expression]
[HAVING having expression]
ORDER BY column];

ORACLE
Copyright © 2004, Oracle. All rights reserved.

4-5

GROUP BY with ROLLUP and
CUBE Operators

 Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing
columns.

 ROLLUP grouping produces a result set containing
the regular grouped rows and the subtotal values.

 CUBE grouping produces a result set containing
the rows from ROLLUP and cross-tabulation rows.

ORACLE

4-6 Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator

e ROLLUP is an extension to the GROUP BY clause.

« Use the ROLLUP operation to produce cumulative
aggregates, such as subtotals.

SELECT [column,] group function(column).
FROM table

[WHERE condition]

[GROUP BY [ROLLUP] | group by expression]
[HAVING having expression];

[ORDER BY column] ;

ORACLE

4-7 Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id < 60

GROUP BY ROLLUP (department id, job id);

DEPARTMENT ID JOB 1D SUM{SALARY)
I 10 AD ASST 4400

10 4400
20 MK_MAN 13000
20 MK_REP 5000
20 15000
30 PLU_MARN 11000
30 PU_CLERK 13900
30 24900
40 HR_REP 5500
| 40 5500 |
50 ST_MARN 35400
50 SH_CLERK 54300
50 ST _CLERK 55700

a0 156400
211200

15 rows selected.

ORACLE

4-8 Copyright © 2004, Oracle. All rights reserved.

CUBE Operator

e CUBE is an extension to the GROUP BY clause.

 You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

SELECT [column,] group function(column). ..
FROM table

[WHERE condition]

[GROUP BY group by expression]

[HAVING having expression]

[ORDER BY column] ;

ORACLE

4-9 Copyright © 2004, Oracle. All rights reserved.

CUBE Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees
WHERE department id < 60

[GROUP BY CUBE (department id, job id) K

DEPARTMENT ID JOB_ID SUM{SALARY)
| A11200
HR_REF BS00
Mk MAN 13000
MK_REP BO00
PU_MAN 11000
ST MAN 36400
AD_ASST 4400
PU CLERK 13900
SH CLERK B4300
ST CLERK 55700
I 441
[10 AD ASST 4400
20 19000
20 MK_MAN 13000
20 MIK_REF 5000
[gl eEz] |
30 PU_MAN 11000

ORACLE

4-10 Copyright © 2004, Oracle. All rights reserved.

GROUPING Function

The GROUPING function:
* Is used with either the CUBE or ROLLUP operator

* Is used to find the groups forming the subtotal in
arow

 |Is used to differentiate stored NULL values from
NULL values created by ROLLUP or CUBE

* Returns 0 or1

SELECT [column,] group function(column) .. ,
GROUPING (expr)

FROM table

[WHERE condition]

[GROUP BY [ROLLUP] [CUBE] group by expression]
[HAVING having expression]
[ORDER BY column] ;

ORACLE

4-11 Copyright © 2004, Oracle. All rights reserved.

GROUPING Function: Example

SELECT department id DEPTID, job id JOB,
SUM (salary),

GROUPING (department id) GRP_DEPT,
GROUPING (job id) GRP JOB

FROM employees

WHERE department id < 50

GROUP BY ROLLUP (department id, Jjob id);

DEPTID JOB SUM{SALARY) GRP_DEPT GRP_JOB

@—> 10 AD_ASET 4400 0 0
10 4400 0 1@

200 Mk_MAN 13000 0 0

20 MK_REP &O00 0 0

20 19000 0 1

30 PLU_kAAN 11000 0 0

J0 PU_CLERK 13300 0 0

30 24900 0 1

40 HRE_REP B500 0 0

40 B500 0 1

4800 1 1

®

11 roves selected.

ORACLE

4-12 Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS

GROUPING SETS syntax is used to define multiple
groupings in the same query.
- All groupings specified in the GROUPING SETS

clause are computed and the results of individual
groupings are combined with a UNION ALL

operation.
« Grouping set efficiency:
— Only one pass over the base table is required.
— There is no need to write complex UNION
statements.
— The more elements GROUPING SETS has, the greater
the performance benefit.

ORACLE

4-13 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

4-14 Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS: Example

SELECT department id, Jjob id,
manager id,avg(salary)
FROM employees
GROUP BY |GROUPING SETS
((dePartment id, job id), (job id,manager id)) ;

DEPARTMENT ID JOB ID MANAGER ID AVG(SALARY)
AD WP 100 17000
AC_MGR 101 12000 “@
FI_MGR 101 12000
HR_REF 107 GE00
MK_MAN 100 13000
MK_REP 201 G000
L PR_REF 101 10000
DEPARTMENT ID JOB ID MANAGER._ID AVG(SALARY)
100 FI_MGR 12000
100 FI_ACCOUNT 7920
110 AC_MGR 12000 <—@
e TTU AL s UUIN ool
ORACLE

4-15 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

4-16 Copyright © 2004, Oracle. All rights reserved.

Composite Columns

A composite column is a collection of columns
that are treated as a unit.

ROLLUP (a,| (b,c) |, d)
 Use parentheses within the GROUP BY clause to
group columns, so that they are treated as a unit
while computing ROLLUP or CUBE operations.
When used with ROLLUP or CUBE, composite

columns would require skipping aggregation
across certain levels.

ORACLE

4-17 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

4-18 Copyright © 2004, Oracle. All rights reserved.

Composite Columns: Example

SELECT department id, Jjob id, manager id,
SUM (salary)
FROM employees
GROUP BY RO-LLUi>(department id, (job id, manager id))

Y

DEPARTMENT ID JOE ID MANAGER. ID SUMISALARY)
®_, Sa,_REP 143 7000
7000
10 AD_ASST 101 4400
10 4400
20 MK_TAHN 00 13000 <J
o0 MK _REP o1 RO @
20 19000
"t 100 | FI_MGR 101 12000
100 FI_ACCOUNT 108 39600
o0 ETE00 4_@
110 AC_ACCOUNT 205 8300
110 20300
E51400 @

46 rows selected.

ORACLE

4-19 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-20 Copyright © 2004, Oracle. All rights reserved.

Concatenated Groupings

- Concatenated groupings offer a concise way to
generate useful combinations of groupings.

 To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle
server combines them into a single GROUP BY
clause.

 The result is a cross-product of groupings from
each grouping set.

GROUP BY GROUPING SETS (a, b), GROUPING SETS(c, d)

ORACLE

4-21 Copyright © 2004, Oracle. All rights reserved.

Concatenated Groupings: Example

SELECT department id, job id, manager id,
SUM (salary)

FROM employees

GROUP BY department id,
ROLLUP (job_id) ,
CUBE (manager id)|;

DEPARTMENT_ID JOB_ID MANAGER_ID SUM{SALARY)
SA REP 149 7000
10 AD_ASST 101 4400
20 WK MAN 100 13000
20 hk_REP 201 5000
| I I
50 AD_WP 100 34000
90 AD PRES 24000
143 7000
i 7000
SA REP 7000
10 AD ASST 4400
| B
110 101 12000
110 205 £300
110 20300

93 rows selected.

ORACLE

4-22 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
the:

ROLLUP operation to produce subtotal values
 CUBE operation to produce cross-tabulation values

 GROUPING function to identify the row values
created by ROLLUP or CUBE
 GROUPING SETS syntax to define multiple
groupings in the same query
 GROUP BY clause to combine expressions in
various ways:
— Composite columns
— Concatenated grouping sets

ORACLE

4-23 Copyright © 2004, Oracle. All rights reserved.

Practice 4: Overview

This practice covers using:
« ROLLUP operators

 CUBE operators
GROUPING functions
* GROUPING SETS

ORACLE

4-24 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-25 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-26 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-27 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-28 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-29 Copyright © 2004, Oracle. All rights reserved.

ORACLE

4-30 Copyright © 2004, Oracle. All rights reserved.

Managing Data in Different Time Zones

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use the following datetime functions:

* TZ OFFSET ° CURRENT DATE
- FROM TZ * CURRENT TIMESTAMP
+ TO TIMESTAMP * LOCALTIMESTAMP

© TO TIMESTAMP TZ °+ DBTIMEZONE

* TO_ YMINTERVAL © SESSIONTIMEZONE

© TO DSINTERVAL * EXTRACT

ORACLE

5-2 Copyright © 2004, Oracle. All rights reserved.

Time Zones

00:00 #02:00 +04:00 +0G:00 #08:00 +10:00 +12:00 +14:00 +16:00 +#18:00 +20:00 +22:00

The image represents the time for
each time zone when Greenwich
time is 12:00.

ORACLE

5-3 Copyright © 2004, Oracle. All rights reserved.

TIME ZONE Session Parameter

TIME ZONE may be set to:
 An absolute offset
 Database time zone
 OS local time zone
- A named region

ALTER SESSION SET TIME ZONE = '-05:00';
ALTER SESSION SET TIME ZONE = dbtimezone;
ALTER SESSION SET TIME ZONE = local;

ALTER SESSION SET TIME ZONE 'America/New_Xork‘;

ORACLE

5-4 Copyright © 2004, Oracle. All rights reserved.

CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

* CURRENT DATE

— Returns the current date from the system
— Has a data type of DATE

* CURRENT TIMESTAMP

— Returns the current timestamp from the system
— Has a data type of TIMESTAMP WITH TIME ZONE

° LOCALTIMESTAMP

— Returns the current timestamp from user session
— Has a data type of TIMESTAMP

ORACLE

5-5 Copyright © 2004, Oracle. All rights reserved.

CURRENT DATE

Display the current date and time in the session’s time
zone.

ALTER SESSION
SET NLS DATE FORMAT = 'DD-MON-YYYY HH24:MI:SS';

ALTER SESSION SET TIME ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
-05:00 03-0CT-2001 09:37:06

ALTER SESSION SET TIME ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
-08:00 03-0CT-2001 06:38:07

ORACLE

5-6 Copyright © 2004, Oracle. All rights reserved.

CURRENT TIMESTAMP

Display the current date and fractional time in the
session’s time zone.

ALTER SESSION SET TIME ZONE = '-5:0';

SELECT SESSIONTIMEZONE, CURRENT TIMESTAMP
FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
-05:00 03-0CT-01 09.40.59.000000 At -05:00

ALTER SESSION SET TIME ZONE = '-8:0';

SELECT SESSIONTIMEZONE, CURRENT TIMESTAMP
FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
|—EIB:EIEI |EI3-DCT—EI1 0&.41.35.000000 Ak 0500

ORACLE

5-7 Copyright © 2004, Oracle. All rights reserved.

LOCALTIMESTAMP

- Display the current date and time in the session’s
time zone in a value of TIMESTAMP data type.

ALTER SESSION SET TIME ZONE = '-5:0';
SELECT CURRENT TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

| CURRENT_TIMESTAMP | LOCALTIMESTAMP
03-0CT-01 09.44.21.000000 AM -05:00 03-0CT-01 09.44.21.000000 AM
ALTER SESSION SET TIME ZONE = '-8:0';
SELECT CURRENT TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

| CURRENT_TIMESTAMP | LOCALTIMESTAMP
03-0CT-01 05.45.21.000001 AM -03:00 03-0CT-01 05.45.21.000001 AM

° LOCALTIMESTAMP returns a TIMESTAMP value,
whereas CURRENT TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

ORACLE

5-8 Copyright © 2004, Oracle. All rights reserved.

DBTIMEZONE and SESSIONTIMEZONE

- Display the value of the database time zone.

SELECT DBTIMEZONE FROM DUAL;

| DBTIME
-05:00

- Display the value of the session’s time zone.

SELECT SESSIONTIMEZONE FROM DUAL;

| SESSIONTIMEZONE
-08:00

ORACLE

5-9 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the
DATE data type.
* |t stores the year, month, and day of the DATE data
type, plus hour, minute, and second values,
as well as the fractional second value.
« Variations in TIMESTAMP are:
— TIMESTAMP
[(fractional seconds precision)]
— TIMESTAMP

[(fractional seconds precision)]
WITH TIME ZONE

— TIMESTAMP
[(fractional seconds precision)]
WITH LOCAL TIME ZONE

ORACLE

5-10 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Types

Data Type Fields

Year, Month, Day, Hour, Minute,

TIMESTAMP :)
Second with fractional seconds

TIMESTAMP WITH TIME

Same as the TIMESTAMP data type;
ZONE

also includes:

TimeZone_Hour, and
TimeZone_Minute or
TimeZone_Region

Same as the TIMESTAMP data type;
also includes a a time zone offset in
its value

TIMESTAMP WITH LOCAL
TIME ZONE

ORACLE

5-11 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Fields

Datetime Field Valid Values

YEAR —4712 to 9999 (excluding year 0)
MONTH 01 to 12

DAY 01 to 31

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision
TIMEZONE_HOUR -12 to 14

TIMEZONE_MINUTE | 00 to 59

ORACLE

5-12 Copyright © 2004, Oracle. All rights reserved.

Difference between DATE and TIMESTAMP

-- when hire date is | |[ALTER TABLE emp5
of type DATE MODIFY hire_date TIMESTAMP ;
SELECT hire date SELECT hire date
FROM emp5; FROM emp5;

HIRE_DATE HIRE_DATE
17-dUIr-57 17-JUM-87 12.00.00. 000000 20
21-=EF-54 21-SEP-89 12.00.00.000000 A

135-1AM-95
O=-JdA0-20
271 -l AN -5
25-JUI-2
O5-F EB-9S

153-AAM-93 120000000000 AR
O=5-JAM-90 12.00.00.000000 Ak
21-RAAN-91 12.00.00.000000 Sk
25-JUM-97 12.00.00.000000 2.0

T_EEELEE 05-FEB-95 12.00.00.000000 Ak
1 FoALG.Gd O7-FEB-99 12.00.00.000000 Ak
A7 17-AG-54 12.00.00.000000 &k
25-SEP-97F 16-A10G-54 12.00.00.000000 &k

cee 28-SEP-S97 12.00.00. 0000000 A2k
S0-=EF-97 12.00.00.000000 AW

ORACLE

5-13 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

. TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone
displacement in its value.

 The time zone displacement is the difference,

in hours and minutes, between local time and
UTC.

* ltis specified as:

TIMESTAMP[(fractional seconds precision)]
WITH TIME ZONE

ORACLE

5-14 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIMEZONE: Example

CREATE TABLE web orders
(ord id number primary key,
order date TIMESTAMP WITH TIME ZONE) ;

INSERT INTO web orders values
(ord seq.nextval, current date);

SELECT * FROM web_prders;

ORD_ID ORDER_DATE
100 09-FEB-O4 07.04.44. 000000 A -057:00

ORACLE

5-15 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE

. TIMESTAMP WITH LOCAL TIME ZONE is another
variant of TIMESTAMP that includes a time zone

displacement in its value.

« Data stored in the database is nhormalized to the
database time zone.

 The time zone displacement is not stored as part
of the column data.

« The Oracle database returns the data in the user’s
local session time zone.

* The TIMESTAMP WITH LOCAL TIME ZONE data
type is specified as follows:

TIMESTAMP[(fractional seconds precision)]
WITH LOCAL TIME ZONE

ORACLE

5-16 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE.:
Example

CREATE TABLE shipping (delivery time TIMESTAMP WITH
LOCAL TIME ZONE) ;

INSERT INTO shipping VALUES (current timestamp + 2);

SELECT * FROM shipping;

DELIVERY_TIME
11-FEB-04 07.09.02.000000 Ahd

ALTER SESSION SET TIME ZONE = 'EUROPE/LONDON' ;

SELECT * FROM shipping;

DELIWERY_TIME
11-FEB-04 02.059.02.000000 P

ORACLE

5-17 Copyright © 2004, Oracle. All rights reserved.

INTERVAL Data Types

 INTERVAL data types are used to store the
difference between two datetime values.
 There are two classes of intervals:
— Year-month
— Day-time
* The precision of the interval is:
— The actual subset of fields that constitutes an

interval
— Specified in the interval qualifier

Data Type Fields

INTERVAL YEAR TO MONTH | Year, Month

INTERVAL DAY TO SECOND Days_, Hour, Minute, Second with
fractional seconds

ORACLE

5-18 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-19 Copyright © 2004, Oracle. All rights reserved.

INTERVAL Fields

INTERVAL Field | Valid Values for Interval

YEAR Any positive or negative integer
MONTH 00 to 11

DAY Any positive or negative integer
HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision

ORACLE

5-20 Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time
using the YEAR and MONTH datetime fields.

INTERVAL YEAR [(year precision)] TO MONTH

For example:

'312-2' assigned to INTERVAL YEAR(3) TO MONTH

Indicates an interval of 312 years and 2 months

'312-0' assigned to INTERVAL YEAR(3) TO MONTH

Indicates 312 years and 0 months

'0-3' assigned to INTERVAL YEAR TO MONTH

Indicates an interval of 3 months

ORACLE

5-21 Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH: Example

CREATE TABLE warranty
(prod id number, warranty time INTERVAL YEAR (3)

TO MONTH) ;

INSERT INTO warranty VALUES (123, INTERVAL '8
MONTH) ;

INSERT INTO warranty VALUES (155, INTERVAL '200'
YEAR (3)) ;

INSERT INTO warranty VALUES (678, '200-11"');
SELECT * FROM warranty;

PROD_ID WARRANTY _TIME
123 +100-03
155 +200-00
B78 +200-11

ORACLE

5-22 Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND
(fractional seconds precision)stores a period
of time in days, hours, minutes, and seconds.

INTERVAL DAY[(day precision)] TO Second

°* For example:

INTERVAL '6 03:30:16' DAY TO SECOND

Indicates an interval of 6 days 3 hours 30 minutes
and 16 seconds

INTERVAL '6 00:00:00' DAY TO SECOND

Indicates an interval of 6 days and 0 hours, O
minutes and 0 seconds

ORACLE

5-23 Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND
Data Type: Example

CREATE TABLE lab
(exp id number, test time INTERVAL DAY (2) TO

SECOND) ;
INSERT INTO lab VALUES (100012, '90 00:00:00"'");
INSERT INTO lab VALUES (56098,

INTERVAL '6 03:30:16' DAY TO SECOND) ;

SELECT * FROM lab;

EXP_ID TEST_TIME
100072 +50 00:00:00. 000000
56055 B 03:30:16.000000

ORACLE

5-24 Copyright © 2004, Oracle. All rights reserved.

EXTRACT

- Display the YEAR component from the SYSDATE.
SELECT |[EXTRACT (YEAR FROM SYSDATE) | FROM DUAL;

| EXTRACT(YEARFROMSYSDATE)
| 2001

- Display the MONTH component from the HIRE DATE
for those employees whose MANAGER ID is 100.

SELECT last name, hire date,

EXTRACT (MONTH FROM HIRE_DATE)
FROM employees

WHERE manager id = 100;

| LAST_NAME | HIRE_DATE | EXTRACT(MONTHFROMHIRE_DATE)

Kochhar 21-5EP-83 | g
D Haan 13-JAN-93 |

IMourgos [1B-NOY-99 | 11
Zlatkey [29-JAN-00 |

Hartstein 117-FEB-96 | 2

ORACLE

5-25 Copyright © 2004, Oracle. All rights reserved.

TZ OFFSET

- Display the time zone offset for the time zone
'US/Eastern'’.

SELECT TZ OFFSET ('US/Eastern') FROM DUAL;

| TZ_OFFS
-04:00

- Display the time zone offset for the time zone
'Canada/Yukon'.

SELECT TZ OFFSET ('Canada/Yukon') FROM DUAL;

| TZ_OFFS ‘

-07:00

- Display the time zone offset for the time zone
'Europe/London’'.

SELECT TZ OFFSET ('Europe/London') FROM DUAL;

| TZ_OFFS
+01:00

ORACLE

5-26 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

5-27 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Conversion Using FROM TZ

* Display the TIMESTAMP value '2000-03-28 08:00:00"
as a TIMESTAMP WITH TIME ZONE value.

SELECT FROM TZ (TIMESTAMP
'2000-03-28 08:00:00','3:00")

FROM DUAL;
| FROM_TZ(TIMESTAMP2000-03-2808:00:00°,3:00)

|28-MAR-EIEI 05.00.00.000000000 AR +03:00
* Display the TIMESTAMP value '2000-03-28 08:00:00"
as a TIMESTAMP WITH TIME ZONE value for the
time zone region 'Australia/North'.

SELECT FROM_TZ (TIMESTAMP
'2000-03-28 08:00:00', 'Australia/North')

FROM DUAL;
| FROM_TZ(TIMESTAMP2000-03-2808:00:00°, AUSTRALIA/NORTH)) ‘

|28-MAR-DD 03.00.00. 000000000 Ak AUSTRALIAMNORTH

ORACLE
Copyright © 2004, Oracle. All rights reserved.

5-28

Converting to TIMESTAMP Using
TO TIMESTAMP and TO TIMESTAMP TZ

- Display the character string '2000-12-01 11:00:00"
as a TIMESTAMP value.

SELECT TO TIMESTAMP ('2000-12-01 11:00:00',
'YYYY-MM-DD HH:MI:SS')

FROM DUAL;

| TO_TIMESTAMP ("2000-12-0111:00:00°, YYYY-MM-DDHH: MI: 557
|EI1 -DEC-00 11.00.00.000000000 Ak

- Display the character string '1999-12-01 11:00:00 -
8:00' as a TIMESTAMP WITH TIME ZONE value.
SELECT
TQ_IIMESTAMB_TZ('1999-12—01 11:00:00 -8:00"',
'YYYY-MM-DD HH:MI:SS TZH:TZM')

FROM DUAL;

| TO_TIMESTAMP_TZ{"1999-120111:00:00-8:00°,%YYY-MM-DDHH:MI:SSTZH: TZM")
|EI1-DEC-99 11.00.00.000000000 A -O05:00

ORACLE

5-29 Copyright © 2004, Oracle. All rights reserved.

Time Interval Conversion with
TO_YMINTERVAL

Display a date that is one year, two months after the
hire date for the employees working in the department
with the DEPARTMENT ID 20.

SELECT hire date,
hire date + TO YMINTERVAL('01-02') AS
HIRE DATE YMININTERVAL

FROM employees

WHERE department id = 20;

| HIRE_DATE | HIRE_DATE_YMININTERY
|1?'—FEEE-1EJE|E 00:00:00 |1?-AF’R-199?’ 00:00:00
|1?-AUG-199? 00:00:00 |1.'-"—CICT-199EE 00:00:00

ORACLE

5-30 Copyright © 2004, Oracle. All rights reserved.

TO DSINTERVAL: Converts a character string to an

Using TO DSINTERVAL:

Example

INTERVAL DAY TO SECOND data type

SELECT last name,

TO CHAR (hire date, 'mm-dd-yy:hh:mi:ss') hire date,

TO_CHAR (hire date +
TO DSINTERVAL('100 10:00:00"),
'mm-dd-yy:hh:mi:ss') hiredate2
FROM employees;

LAST HAME HIRE_DATE
king O=-17-287:12:00:00
Kochhar 09-21-89:12:00:00
De Haan 01-13-93:12:00:00
Hunold 01-03-90:12:00:00
Ernst 05-21-91:12:00:00
Austin OB-25-97.12:00:00
Fataballa 02-05-95:12:00:00
Lorentz 02-07-99:122:00:00
Sreenberg 03-17-94:12:00:00
Fawviet 08-165-94:12:00:00

ORACLE

5-31

HIREDATE2?

09-25-57:10:00:00
12-30-29:10:00:00
04-23-93:10:00:00
O4-13-90:10:00:00
05-29-91:10:00:00
10-03-97:10:00:00
05-16-98:10:00:00
05-13-99:10:00:00
11-25-94:10:00:00
11-24-94:10:00:00

Copyright © 2004, Oracle. All rights reserved.

Daylight Saving Time

* First Sunday in April
— Time jumps from 01:59:59 a.m. to 03:00:00 a.m.

— Values from 02:00:00 a.m. to 02:59:59 a.m. are not
valid.

« Last Sunday in October
— Time jumps from 02:00:00 a.m. to 01:00:01 a.m.

— Values from 01:00:01 a.m. to 02:00:00 a.m. are
ambiguous because they are visited twice.

ORACLE

5-32 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

5-33 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following functions:

* TZ OFFSET * CURRENT DATE
* FROM T2Z °* CURRENT TIMESTAMP
* TO _TIMESTAMP ° LOCALTIMESTAMP
* TO TIMESTAMP TZ -+ DBTIMEZONE
* TO_YMINTERVAL ° SESSIONTIMEZONE
* EXTRACT

ORACLE

5-34 Copyright © 2004, Oracle. All rights reserved.

Practice 5: Overview

This practice covers using the datetime functions.

ORACLE

5-35 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-36 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-37 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-38 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-39 Copyright © 2004, Oracle. All rights reserved.

ORACLE

5-40 Copyright © 2004, Oracle. All rights reserved.

Retrieving Data Using Subqueries

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Write a multiple-column subquery
« Use scalar subqueries in SQL
* Solve problems with correlated subqueries

 Update and delete rows using correlated
subqueries

 Use the EXISTS and NOT EXISTS operators
 Use the WITH clause

ORACLE

6-2 Copyright © 2004, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query b
WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery
100 90
102 60
124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

ORACLE

6-3 Copyright © 2004, Oracle. All rights reserved.

Column Comparisons

Column comparisons in a multiple-column subquery
can be:

 Pairwise comparisons
 Nonpairwise comparisons

ORACLE

6-4 Copyright © 2004, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same
department as the employees with EMPLOYEE ID 199

or 174.

SELECT employee id, manager id, department id

FROM employees

WHERE (manager id, department id) IN

(SELECT manager id, department id
FROM employees

WHERE employee id IN (199,174))
AND employee id NOT IN (199,174);

ORACLE

6-5 Copyright © 2004, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed

by the same manager as the employees with
EMPLOYEE ID 174 or 199 and work in the same

department as the employees with EMPLOYEE ID 174

or 199.
SELECT employee id, manager id, department id
FROM employees

WHERE manager id IN

(SELECT manager id
FROM employees
WHERE employee_id IN (174,199))
AND department id IN
'(SELECT department id
FROM employees
WHERE employee id IN (174,199))

AND employee id NOT IN(174,199);

ORACLE

6-6 Copyright © 2004, Oracle. All rights reserved.

Scalar Subquery Expressions

A scalar subquery expression is a subquery that
returns exactly one column value from one row.

« Scalar subqueries can be used in:
— Condition and expression part of DECODE and CASE
— All clauses of SELECT except GROUP BY

ORACLE

6-7 Copyright © 2004, Oracle. All rights reserved.

Scalar Subqueries: Examples

- Scalar subqueries in CASE expressions

SELECT employee id, last name,

(CASE 20
WHEN department id =< |

(SELECT department id

FROM departments

WHERE location id = 1800)
THEN 'Canada' ELSE 'USA' END) location

FROM employees;
* Scalar subqueries in ORDER BY clause

SELECT employee id, last name

FROM employees e

ORDER BY | (SELECT department name

FROM departments d

WHERE e.department id = d.department id);

ORACLE

6-8 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

6-9 Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for every
row of the outer query.

GET
candidate row from outer query

1

EXECUTE
inner query using candidate row value

1

USE
values from inner query to qualify or
disqualify candidate row

ORACLE

6-10 Copyright © 2004, Oracle. All rights reserved.

—

Correlated Subqueries

The subquery references a column from a table in the
parent query.

SELECT columnl, columnZ2,
FROM tablel outer
WHERE columnl operator

(SELECT columnl, column2

FROM table2

WHERE exprl =
outer.|expr?) ;

ORACLE

6-11 Copyright © 2004, Oracle. All rights reserved.

Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

SELECT last name, salary, department id
FROM employees outer
WHERE salary >

| (SELECT AVG(salary)
FROM employees

WHERE department id =
outer.department id);

Each time a row from
the outer query

is processed, the
inner query is
evaluated.

ORACLE

6-12 Copyright © 2004, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.

SELECT e.employee id, last name,e.job id
FROM employees e
WHERE 2 <= (SELECT COUNT (*)
FROM job_history
WHERE employee id = e.employee id);

EMPLOYEE_ID LAST NAME JOB ID
101 Kochhar AD WP
176 Taylor =4 HEF
200 Whalen AD ASET

ORACLE

6-13 Copyright © 2004, Oracle. All rights reserved.

Using the EXISTS Operator

« The EXISTS operator tests for existence of rows in
the results set of the subquery.

- If a subquery row value is found:

— The search does not continue in the inner query
— The condition is flagged TRUE

- If a subquery row value is not found:
— The condition is flagged FALSE

— The search continues in the inner query

ORACLE

6-14 Copyright © 2004, Oracle. All rights reserved.

Find Employees Who Have at Least One
Person Reporting to Them

SELECT employee id, last name, Jjob id, department id
FROM employees outer
WHERE | EXISTS |(SELECT 'X'
FROM employees
WHERE manager id =
outer.employee id);

EMPLOYEE_ID LAST HAME JOB_ID DEPARTMENT_ID
100 King A0 _FPRES Q0
101 Kochhar A0 R 20
102 De Haan A0 WF a0
1053 Hunold IT_PROGE B0
105 Sreenberg FI_MER 100
114 Raphaely P RS =0
120 “Weiss ST kAR 50
121 Fripp ST kAR S0
122 Kaufling ST kelsd S0
123 “allman ST ksl S0
124 kMourgos ST kALp 50
145 Russell sS4 kLA 20
145 FPartners S8 elA =0
147 Errazuriz S8 el =0
1458 Cambrault SA AR 30
149 Llotkey SA AR 30
201 Hartstein Pl b Pl 20
205 | Higgins AC MGER 110

18 rows selected.

ORACLE

6-15 Copyright © 2004, Oracle. All rights reserved.

Find All Departments That Do Not Have
Any Employees

SELECT department id, department name

FROM departments d
WHERE | NOT EXISTS kSELECT 'X!
FROM employees
WHERE department id = d.department id);

DEPARTMENT _ID DEPARTMENT _NAME
120 Treasury
130 Corporate Tax
140 Cantrol And Credit
150 Shareholder Services
160 Benefits
170 Manufacturing

260 Recruiting
270 Payrall

16 rows selected.

ORACLE

6-16 Copyright © 2004, Oracle. All rights reserved.

Correlated UPDATE

Use a correlated subquery to update rows in one table
based on rows from another table.

UPDATE tablel aliasl
SET column = (SELECT expression
FROM table2 aliasZ2
WHERE aliasl.column =
alias2.column) ;

ORACLE

6-17 Copyright © 2004, Oracle. All rights reserved.

Using Correlated UPDATE

- Denormalize the EMPL6 table by adding a column
to store the department name.

- Populate the table by using a correlated update.

ALTER TABLE empl6
ADD (department name VARCHAR2 (25)) ;

UPDATE empl6 e
SET department name =
(SELECT department name
FROM departments d
WHERE e.department id = d.department id);

ORACLE
6-18 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

6-19 Copyright © 2004, Oracle. All rights reserved.

Correlated DELETE

Use a correlated subquery to delete rows In one table
based on rows from another table.

DELETE FROM tablel aliasl
WHERE column operator
(SELECT expression
FROM table2 alias2
WHERE aliasl.column = alias2.column),

ORACLE

6-20 Copyright © 2004, Oracle. All rights reserved.

Using Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPL6 table that also exist in the

EMP HISTORY table.

DELETE FROM empl6 E
WHERE employee id =
(SELECT employee id
FROM emp history
WHERE employee id = E.employee id);

ORACLE

6-21 Copyright © 2004, Oracle. All rights reserved.

The WITH Clause

 Using the WITH clause, you can use the same
query block in a SELECT statement when it occurs

more than once within a complex query.

 The WITH clause retrieves the results of a query
block and stores it in the user’s temporary
tablespace.

« The WITH clause improves performance.

ORACLE

6-22 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

ORACLE

6-23 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept costs] AS (
SELECT d.department name, SUM(e.salary) AS dept total
FROM employees e JOIN departments d
ON e.department id = d.department id
GROUP BY d.department name),
avg _cost AS (
SELECT SUM(dept total)/COUNT (*) AS dept avg
FROM dept costs
SELECT * -
FROM pep§=costs
WHERE dept total >
(SELECT dept avg
FROM| avg cost)
ORDER BY departméﬁt_name;

ORACLE

6-24 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
A multiple-column subquery returns more than
one column.
* Multiple-column comparisons can be pairwise or
nonpairwise.

A multiple-column subquery can also be used in
the FROM clause of a SELECT statement.

ORACLE

6-25 Copyright © 2004, Oracle. All rights reserved.

Summary

« Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row.

« The EXISTS operator is a Boolean operator that
tests the presence of a value.

« Correlated subqueries can be used with SELECT,
UPDATE, and DELETE statements.

* You can use the WITH clause to use the same
query block in a SELECT statement when it occurs
more than once.

ORACLE

6-26 Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
« Creating multiple-column subqueries
* Writing correlated subqueries
* Using the EXISTS operator

« Using scalar subqueries
 Using the WITH clause

ORACLE

6-27 Copyright © 2004, Oracle. All rights reserved.

ORACLE

6-28 Copyright © 2004, Oracle. All rights reserved.

ORACLE

6-29 Copyright © 2004, Oracle. All rights reserved.

ORACLE

6-30 Copyright © 2004, Oracle. All rights reserved.

ORACLE

6-31 Copyright © 2004, Oracle. All rights reserved.

ORACLE

6-32 Copyright © 2004, Oracle. All rights reserved.

Hierarchical Retrieval

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Interpret the concept of a hierarchical query
* Create a tree-structured report

 Format hierarchical data

 Exclude branches from the tree structure

ORACLE

7-2 Copyright © 2004, Oracle. All rights reserved.

Sample Data from the EMPLOYEES Table

EMPLOYEE_ID LAST_NAME JOB_ID MANAGER_ID

100 King AD PRES

101 Kochhar AL WP 100
102 De Haan AL WP 100
103 Hunold IT_PROG 102
104 Ernst IT_PROG 103
105 Awustin IT_PROG 103
106 Pataballa IT_PROG 103
107 Loarentz IT_PROG 103
103 (Sreenberg FI_MGGRE 101

EMPLOYEE_ID LAST_NAME JOB_ID MANAGER_ID

196 Walsh SH_CLERK 124
197 Feeney =H_CLERK 124
198 OConnell SH_CLERK 124
199 Grant SH_CLERK 124
200 Whalen AD ASST 101
201 Hartstein b RAAR 100
202 Fay hk_REP 201
203 Mavris HFE_REF 101
204 Baer FPR_REF 101
205 Higgins AL MGR 101
206 Gietz AL ACCOUNT 205

107 rows selected.

ORACLE

7-3 Copyright © 2004, Oracle. All rights reserved.

Natural Tree Structure

EMPLOYEE ID = 100 (Parent)
King

MANAGER ID = 100 (Child)

Kochhar De Haan Mourgos Zlotkey Hartstein

Whalen Higgins Hunold Rajs Davies Matos Vargas

] | | P

Gietz Ernst Lorentz Abel Taylor Grant

ORACLE

7-4 Copyright © 2004, Oracle. All rights reserved.

Hierarchical Queries

SELECT [LEVEL], column, expr...
FROM table

[WHERE condition (s)]

[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)] |;

WHERE condition:

expr comparison operator expr

ORACLE

7-5 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

Starting Point

- Specifies the condition that must be met
 Accepts any valid condition

START WITH columnl = value

Using the EMPLOYEES table, start with the employee
whose last name is Kochhar.

...START WITH last_name = 'Kochhar'

ORACLE

7-6 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

CONNECT BY PRIOR columnl = column?2

Walk from the top down, using the EMPLOYEES table.

. CONNECT BY PRIOR employee id = manager id

Direction

Top down — Column1 = Parent Key
Column2 = Child Key

Bottom up ™ Column1 = Child Key
Column2 = Parent Key

ORACLE

7-7 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Bottom Up

SELECT employee id, last name, job id, manager id
FROM employees

START WITH employee id = 101
CONNECT BY PRIOR manager id = employee id|;

EMPLOYEE_ID LAST NAME JOB_ID MANAGER_ID
101 Kachhar AD VP 100
100 King AD_PRES

ORACLE

7-8 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Top Down

SELECT last name||' reports to '||
PRIOR last:ﬁame "Walk Top Down"
FROM employees

START WITH last name = 'King'
CONNECT BY PRIOR employee id = manager id|;

Walk Top Down
King reparts to
King reparts to
Kochhar reports to King
Sreenbery reports to Kochhar
Faviet reports to Greenberg
Chen reparts to Greenberg

108 rows selected.

ORACLE

7-9 Copyright © 2004, Oracle. All rights reserved.

Ranking Rows with the LEVEL
Pseudocolumn

Level 1
root/parent

King

Kochhar De Haan Mourgos Zlotkey Hartstein

] |] Level 3

Whalen Higgins Hunold Rajs Davies Matos Vargas | |Parent/child /leaf

| | | P
GietzErnst Lorentz Abel Taylor Grant
Level 4
leaf

ORACLE

7-10 Copyright © 2004, Oracle. All rights reserved.

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUMN org chart FORMAT Al2

SELECT LPAB(lasp_name, LENGTH(last_pame)+(LEVEL*2)—2,'_Lj
AS org chart

FROM employees

START WITH last name='King'

CONNECT BY PRIOR employee id=manager id

ORACLE

7-11 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

7-12 Copyright © 2004, Oracle. All rights reserved.

Pruning Branches

Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.
WHERE last name !'= 'Higgins'CONNECT BY PRIOR
employee id = manager_ id
AND last name != 'Higgins'
Kochhar Kochhar
Whalen iggins Whalen Higgins
Gietz Gietz
ORACLE

7-13 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:

 You can use hierarchical queries to view a
hierarchical relationship between rows in a table.

* You specify the direction and starting point of the

query.
* You can eliminate nodes or branches by pruning.

ORACLE

7-14 Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:

- Distinguishing hierarchical queries from
nonhierarchical queries

- Walking through a tree

* Producing an indented report by using the LEVEL
pseudocolumn

* Pruning the tree structure
- Sorting the output

ORACLE

7-15 Copyright © 2004, Oracle. All rights reserved.

ORACLE

7-16 Copyright © 2004, Oracle. All rights reserved.

ORACLE

7-17 Copyright © 2004, Oracle. All rights reserved.

ORACLE

7-18 Copyright © 2004, Oracle. All rights reserved.

Regular Expression Support

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use regular expression support in SQL to search,

match, and replace strings all in terms of regular
expressions.

ORACLE
8-2 Copyright © 2004, Oracle. All rights reserved.

Regular Expression Overview

A multilingual
regular expression
support for SQL
and PLSQL string
types

ABC
A method of
describing both Several new
simple and complex functions to
patterns for support regular

searching and
manipulating

ORACLE

8-3 Copyright © 2004, Oracle. All rights reserved.

expressions

ORACLE

8-4

Meta Characters

Symbol Description
* Matches zero or more occurrences
| Alteration operator for specifying alternative matches
A Matches the start-of-line/end-of-line
[] Bracket expression for a matching list matching any one of the
expressions represented in the list
{m} Matches exactly m times
{m,n} Matches at least m times but no more than n times
[:] Specifies a character class and matches any character in that class
\ Can have 4 different meanings: 1. Stand for itself. 2. Quote the next
character. 3. Introduce an operator. 4. Do nothing.
+ Matches one or more occurrence
Matches zero or one occurrence
. Matches any character in the supported character set, except NULL
() Grouping expression, treated as a single subexpression
[== Specifies equivalence classes
\n Back-reference expression

[.]

Specifies one collation element, such as a multicharacter element

Copyright © 2004, Oracle. All rights reserved.

Using Meta Characters

Problem: Find 'abc' within a string:
Solution: 'abce' (::)

Matches: abc
Does not match: 'def'

Problem: To find 'a' followed by any character, followed

by 'c'

Meta Character: any character is defined by '.'

Solution: 'a.c' <::>
Matches: abc

Matches: adc

Matches: alc

Matches: a&c

Does not match: abb

Problem: To find one or more occurrences of 'a'
Meta Character: Use'+' sign to match one or more of the

previous characters <::>

Solution: 'at+'
Matches: a

Matches: aa
Does not match: bbb

ORACLE

8-5 Copyright © 2004, Oracle. All rights reserved.

Notes Only

ORACLE

8-6 Copyright © 2004, Oracle. All rights reserved.

Regular Expression Functions

Function Name Description

REGEXP LIKE Similar to the LIKE operator, but performs
regular expression matching instead of
simple pattern matching

REGEXP REPLACE | Searches for a regular expression pattern
and replaces it with a replacement string

REGEXP INSTR Searches for a given string for a regular
expression pattern and returns the
position where the match is found

REGEXP SUBSTR | Searches for a regular expression pattern
within a given string and returns the
matched substring

ORACLE

8-7 Copyright © 2004, Oracle. All rights reserved.

The REGEXP Function Syntax

REGEXP LIKE (srcstr, pattern [,match option])

REGEXP INSTR (srcstr, pattern [, position [, occurrence
[, return option [, match option]]]])

REGEXP SUBSTR (srcstr, pattern [, position
[, occurrence [, match option]]])

REGEXP REPLACE (srcstr, pattern [,replacestr [, position
[, occurrence [, match option]]]])

ORACLE

8-8 Copyright © 2004, Oracle. All rights reserved.

Performing Basic Searches

SELECT first name, last name
FROM employees
WHERE REGEXP LIKE (first name, '~Ste(v|ph)en$');

FIRST HAME LAST HAME
steven King
steven Farkle
=tephen =tiles

ORACLE

8-9 Copyright © 2004, Oracle. All rights reserved.

Checking the Presence of a Pattern

SELECT street address,

REGEXP INSTR(street address,'[“[:alpha:]]"')
FROM locations
WHERE

REGEXP INSTR(street address,'[“[:alpha:]]')> 1;

STREET_ADDRESS REGEXP_INSTR{STREET _ADDRESS,T*[:ALPHA:]])
Magdalen Centre, The Oxford Science Park S
Schwanthalerstr, F031 16
Fua Frei Caneca 1360 4
hMurtenstrasse 921 14
Fieter Breughelstraat 537 !
Mariano Escobedo 99591 g8

ORACLE

8-10 Copyright © 2004, Oracle. All rights reserved.

Example of Extracting Substrings

SELECT REGEXP SUBSTR(street address , ' [*]+ ')
"Road" FROM locations;

Hoad
“ia
Calle

Jabberwocky
Interiars
fagoara
Charade

ORACLE

8-11 Copyright © 2004, Oracle. All rights reserved.

Replacing Patterns

SELECT REGEXP REPLACE(country name, '(.)',
'\l ') "REGEXP REPLACE"

FROM countries;

REGEXP REPLACE({COUNTRY NAME.,(.)’,"17
Argentina
Australia
Belgium
Brazil
Canada
aowitzerland
China

ORACLE

8-12 Copyright © 2004, Oracle. All rights reserved.

Regular Expressions and
Check Constraints

ALTER TABLE emp8
ADD CONSTRAINT email addr (::)

CHECK (REGEXP LIKE (email, '@'))NOVALIDATE ;

(500, 'Christian’', 'Patel’,
'ChrisP2creme.com', 1234567890,
'l12-Jan-2004', 'HR REP', 2000, null, 102, 40) ;

INSERT INTO emp8 VALUES

INSERT INTO empd WALUES

+

ERREOR atline 1
ORA-02290: check constraint (ORAZ0 EMAIL _ADDR) violated

ORACLE

8-13 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
regular expression support in SQL and PL/SQL to
search, match, and replace strings all in terms of
regular expressions.

ORACLE

8-14 Copyright © 2004, Oracle. All rights reserved.

Practice 8: Overview

This practice covers using regular expressions.

ORACLE

8-15 Copyright © 2004, Oracle. All rights reserved.

ORACLE

8-16 Copyright © 2004, Oracle. All rights reserved.

ORACLE

8-17 Copyright © 2004, Oracle. All rights reserved.

ORACLE

8-18 Copyright © 2004, Oracle. All rights reserved.

Writing Advanced Scripts

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
 Describe the type of problems that are solved by
using SQL to generate SQL
- Write a script that generates a script of DROP
TABLE statements
« Write a script that generates a script of INSERT
INTO statements

ORACLE

C-2 Copyright © 2004, Oracle. All rights reserved.

Using SQL to Generate SQL

« SQL can be used to generate scripts in SQL

 The data dictionary:

— Is a collection of tables and views that contain
database information

— Is created and maintained by the Oracle server

sqQL Data dictionary

SQL script

ORACLE

C-3 Copyright © 2004, Oracle. All rights reserved.

Creating a Basic Script

SELECT 'CREATE TABLE ' || table name ||
' test ' || 'AS SELECT * FROM '
| | table name ||' WHERE 1=2;'

AS "Create Table Script"

FROM user tables;

| Create Table Script

|CREATE TABLE COUNTRIES test AS SELECT * FROM COUNTRIES WHERE 1=2,
|CREATE TABLE DEPARTMENTS test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
ICREATE TABLE EMPLOYEES_test AS SELECT * FROM EMPLOYEES WHERE 1=2;
|CREATE TABLE JOBS test AS SELECT * FROM JOBS WHERE 1=2;

|CREATE TABLE JOB_GRADES _test AS SELECT * FROM JOB_GRADES WHERE 1=2;
|CREATE TABLE JOB_HISTORY _test AS SELECT * FROM JOB_HISTORY WHERE 1=2;
ICREATE TABLE LOCATIONS test AS SELECT * FROM LOCATIONS WHERE 1=2;
|CREATE TABLE REGIONS_test AS SELECT * FROM REGIONS WHERE 1=2;

B rows selected.

ORACLE

C-4 Copyright © 2004, Oracle. All rights reserved.

Controlling the Environment

SET ECHO OFF

SET FEEDBACK OFF Set system variables
—

SET PAGESIZE 0 to appropriate values.

SPOOL dropem.sql

SQL STATEMENT
SPOOL OFF

SET FEEDBACK ON
SET PAGESIZE 24 Set system variables
SET ECHO ON back to the default
value.

ORACLE

C-5 Copyright © 2004, Oracle. All rights reserved.

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE O

SELECT 'DROP TABLE ' || object name || ';'
FROM user objects

WHERE object type = 'TABLE'

/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

ORACLE

C-6 Copyright © 2004, Oracle. All rights reserved.

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE O

SELECT
'INSERT INTO departments test VALUES
(' || department id || ', '"'' || department name ||

vvv, TV ||location_id|| vvv);v
AS "Insert Statements Script"
FROM departments

/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

ORACLE

C-7 Copyright © 2004, Oracle. All rights reserved.

C-8

Dumping the Contents of a Table to a File

Source

"'x"'

""||department_name||""

"');l

Result

'X'

'Administration'’

! !
4

');

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Generating a Dynamic Predicate

COLUMN my col NEW VALUE dyn where clause

SELECT DECODE ('&&deptno', null,
DECODE ('&&hiredate', null, ' ',

'WHERE hire date=TO DATE('''||'&&hiredate'',6 ''DD-MON-YYYY'')'),
DECODE ('&&hiredate', null,

'WHERE department id = ' || '&é&deptno',

'WHERE department id = ' || '&&deptno' ||

' AND hire date = TO DATE('''||'&&hiredate'', ' 'DD-MON-YYYY'') "))

AS my col FROM dual;

SELECT last name FROM employees &dyn where clause;

ORACLE

C-9 Copyright © 2004, Oracle. All rights reserved.

ORACLE

C-10 Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned the

following:
 You can write a SQL script to generate another
SQL script.

- Script files often use the data dictionary.
* You can capture the output in a file.

ORACLE

C-11 Copyright © 2004, Oracle. All rights reserved.

ORACLE

C-12 Copyright © 2004, Oracle. All rights reserved.

Oracle Architectural Components

ORACLE

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

« Describe the Oracle server architecture and its
main components

* List the structures involved in connecting a user
to an Oracle instance
* List the stages in processing:
— Queries
— DML statements
— Commits

ORACLE

D-2 Copyright © 2004, Oracle. All rights reserved.

Oracle Database Architecture: Overview

The Oracle database consists of two main
components:

- The database or the physical structures
 The instance or the memory structures

ORACLE

D-3 Copyright © 2004, Oracle. All rights reserved.

Database Physical Architecture

Control files

Data files Online redo log files

Parameter file Password file Archive log files
ORACLE

D-4 Copyright © 2004, Oracle. All rights reserved.

Control Files

- Contains physical database structure information
* Multiplexed to protect against loss
 Read at mount stage

Control files

ORACLE

D-5 Copyright © 2004, Oracle. All rights reserved.

Redo Log Files

 Record changes to the database
* Multiplexed to protect against loss

Redo log
buffer
|

Log
Writer
LGWR

ORACLE

D-6 Copyright © 2004, Oracle. All rights reserved.

Tablespaces and Data Files

 Tablespaces consist of one or more data files.
- Data files belong to only one tablespace.

USERS tablespace

ORACLE

D-7 Copyright © 2004, Oracle. All rights reserved.

Segments, Extents, and Blocks

« Segments exist within a tablespace.

« Segments consist of a collection of extents.
- Extents are a collection of data blocks.

- Data blocks are mapped to OS blocks.

.

€«@€«
' ¢ 4 4 4

Segment Extents Data 0S
blocks blocks

ORACLE

D-8 Copyright © 2004, Oracle. All rights reserved.

Oracle Instance Management

4 SGA)

() 4 N
[Shared pool] Streams pool Large pool
. J \ J
é R a4)
Database Redo log
buffer cache buffer
. J . J
v v
System Process Database Log
Monitor Monitor Writer Writer
SMON PMON DBWO LGWR
Check [_
point Archiver
CKPT > ARCO
ORACLE

D-9 Copyright © 2004, Oracle. All rights reserved.

Oracle Memory Structures

Server Server Back-
process |«+>| PGA process |« PGA ground |[«*| PGA
1 2 process

! ! !
4 SGA)

é) é)

[Shared pool] Streams pool Large pool

. J . J

4) a)
Database Redo log
buffer cache buffer

\ J

ORACLE

D-10 Copyright © 2004, Oracle. All rights reserved.

Oracle Memory Structures (continued)
Full Notes Page

ORACLE

D-11 Copyright © 2004, Oracle. All rights reserved.

Oracle Processes

Server Server Server Server
process process process process
4)
System Global Area
SGA
N J
System || Process | |Database|| Check Log :
: Archiver
monitor || monitor writer point writer ARCO
SMON PMON DBWO CKPT LGWR

Background processes

ORACLE

D-12 Copyright © 2004, Oracle. All rights reserved.

Other Key Physical Structures

P 7 \
N

Database

ORACLE

D-13 Copyright © 2004, Oracle. All rights reserved.

Processing a SQL Statement

« Connect to an instance using:
— The user process
— The server process
 The Oracle server components that are used
depend on the type of SQL statement:
— Queries return rows
— DML statements log changes
— Commit ensures transaction recovery

« Some Oracle server components do not
participate in SQL statement processing.

ORACLE

D-14 Copyright © 2004, Oracle. All rights reserved.

Connecting to an Instance

Oracle server

Client

Applicatioh server

D

Browser

ORACLE

D-15 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-16 Copyright © 2004, Oracle. All rights reserved.

Processing a Query

- Parse:
— Search for identical statement
— Check syntax, object names, and privileges
— Lock objects used during parse
— Create and store execution plan
- Execute: Identify rows selected

 Fetch: Return rows to user process

ORACLE

D-17 Copyright © 2004, Oracle. All rights reserved.

The Shared Pool

- The library cache contains the SQL statement text,
parsed code, and execution plan.

 The data dictionary cache contains table, column,
and other object definitions and privileges.

« The shared pool is sized by SHARED POOL_ SIZE.

ORACLE

D-18 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-19 Copyright © 2004, Oracle. All rights reserved.

Database Buffer Cache

- Stores the most recently used blocks
- Size of a buffer based on DB_BLOCK SIZE

* Number of buffers defined by DB BLOCK BUFFERS

ORACLE

D-20 Copyright © 2004, Oracle. All rights reserved.

Program Global Area (PGA)

 Not shared
Writable only by the server process
 Contains:

— Sort area

— Session information

— Cursor state

— Stack space

Server
process

ORACLE

D-21 Copyright © 2004, Oracle. All rights reserved.

Processing a DML Statement

®

UPDATE

employees ...

. OO G
@

ORACLE

D-22 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-23 Copyright © 2004, Oracle. All rights reserved.

Redo Log Buffer

* Has its size defined by LOG_BUFFER
 Records changes made through the instance
* Is used sequentially

- Is a circular buffer

ORACLE

D-24 Copyright © 2004, Oracle. All rights reserved.

Rollback Segment

Old image

-
Rollback segment

New image

Table

DML statement

ORACLE

D-25 Copyright © 2004, Oracle. All rights reserved.

COMMIT Processing
g
O
®

©,

ORACLE

D-26 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-27 Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to:

+ ldentify database files: data files, control files, and
online redo logs

 Describe SGA memory structures: DB buffer
cache, shared SQL pool, and redo log buffer

 Explain primary background processes:
DBWO, LGWR, CKPT, PMON, SMON, and ARCO

- List SQL processing steps: parse, execute, fetch

ORACLE

D-28 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-29 Copyright © 2004, Oracle. All rights reserved.

ORACLE

D-30 Copyright © 2004, Oracle. All rights reserved.

